Pose-Independent Object Representation by 2-D Views
نویسندگان
چکیده
We here describe a view-based system for the pose-independent representation of objects without making reference to 3-D models. Input to the system is a collection of pictures covering the viewing sphere with no pose information being provided. We merge pictures into a continuous pose-parameterized coverage of the viewing sphere. This can serve as a basis for pose-independent recognition and for the reconstruction of object aspects from arbitrary pose. Our data format for individual pictures has the form of graphs labeled with Gabor jets. The object representation is constructed in two steps. Local aspect representations are formed from clusters of similar views related by point correspondences. Principal component analysis (PCA) furnishes parameters that can be mapped onto pose angles. A global representation is constructed by merging these local aspects.
منابع مشابه
Classifier Independent Viewpoint Selection for 3-D Object Recognition
3–D object recognition has been tackled by passive approaches in the past. This means that based on one image a decision for a certain class and pose must be made or the image must be rejected. This neglects the fact that some other views might exist, which allow for a more reliable classification. This situation especially arises if certain views of or between objects are ambiguous. In this pa...
متن کاملHow to measure the pose robustness of object views
The viewing hemisphere of a three-dimensional object can be partitioned into areas of similar views, which provide pose robustness. We compare two procedures for measuring the robustness of views to pose variation: tracking of object features, i.e. Gabor wavelet responses, by utilizing the continuity of successive views and matching of features in different views, which are assumed to be indepe...
متن کاملA Feature Map Approach to Real-Time 3-D Object Pose Estimation from Single 2-D Perspective Views
A novel approach to the computation of an approximate estimate of spatial object pose from camera images is proposed. The method is based on a neural network that generates pose hypotheses in real time, which can be refined by registration or tracking systems. A modification of Kohonen’s self-organizing feature map is systematically trained with computer generated object views such that it resp...
متن کاملLearning Low Dimensional Invariant Signature of 3-D Object under Varying View and Illumination from 2-D Appearances
In this paper, we propose an invariant signature representation for appearances of 3-D object under varying view and illumination, and a method for learning the signature from multi-view appearance examples. The signature, a nonlinear feature, provides a good basis for 3-D object detection and pose estimation due to its following properties: (1) Its location in the signature feature space is a ...
متن کاملLearning Viewpoint Invariant Representations of Faces in anAttractor
In natural visual experience, diierent views of an object tend to appear in close temporal proximity as an animal manipulates the object or navigates around it. We investigated the ability of an attractor network to acquire view invariant visual representations by associating rst neighbors in a pattern sequence. The pattern sequence contains successive views of faces of ten individuals as they ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000